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Abstract — This paper presents a FSM model of a PV 

system consisting of a PV array and a DC boost converter 

with MPPT. The FSM approach is used to represent 

different operation conditions caused by the change of 

input parameters – a solar irradiance and a temperature. 

Presented model consists of three states. The first state 

represents a steady state operation, the second one a 

dynamic operation during big changes of input parameters 

and the last one uses fill factor to model their small 

changes. Such arrangement enables to reduce a simulation 

time, but it is still capable to simulate correctly the 

dynamics of PV system operation.  

Keywords: photovoltaic system; finite state machine; fill 

factor; modelling 

I.  INTRODUCTION  

The directive 2009/28/EC of the European Parliament and 
of the Council of 23 April 2009 on the promotion of the use of 
energy from renewable sources has put EU member states 
under an obligation to increase the amount of electricity 
produced in renewable energy sources (RES). Due to the fact 
that an electricity generation in some types of RES is quite 
intermittent, it is necessary to study their influence on power 
system operation at all voltage levels. Because the biggest part 
of the required RES installed capacity in Slovak Republic is 
covered by photovoltaic (PV) power plants (537 MWp), 
without considering the big hydro power plants, the authors 
have decided to focus on the creation of a simulation model for 
PV systems, which will represent dynamic operation of these 
systems.  

The problem of PV systems is in the strong dependency of 
their output power on weather conditions, such as a solar 
irradiance or a temperature. Therefore it is useful to create an 
appropriate model to represent their operation during different 
operating conditions. The model representing dynamics of a 
simple PV system consisting of a PV array and loaded DC 
boost converter with maximum power point (MPP) tracking 
algorithm is presented in this paper. The dynamics of MPP 
regulation can be neglected in some cases and the maximum 
power is then calculated using simple equation as in [1]. 
However, the authors have decided to focus on dynamics of 
this regulation, because such a small PV systems, when used in 
islanded Smart Regions, can be source of voltage mitigations 

that can significantly influence an operation of other devices. 
The differential and nonlinear equations are commonly used for 
modelling of such system as in [2], [3], [4]. As the model 
should represent different operation state of PV systems, an 
approach based on finite state machines (FSMs) was used in 
order to simplify these simulations [5]. This method is also 
used in [6] and [7].The model representing both steady states 
and dynamic operation of the PV system had been already 
created in [8]. The model uses these two states during the 
simulation and applies them for calculation according to 
changes of model’s input parameters, which are solar 
irradiance and panel’s temperature. Such arrangement has 
significantly reduced simulation time, but has still simulated 
correctly the dynamics of PV system operation. Some 
researchers calculate maximum power just using a fill factor, as 
in [9], [10]. As shown in [9], the fill factor changes slightly 
with changes of solar irradiance and temperature. Based on this 
assumption the authors decide to specify the third state for the 
model in [8], in which the maximum power point is calculated 
using the fill factor in cases of small changes of input 
parameters. 

II. FINITE STATE MACHINES 

Finite state machines are used to model system behavior in 
many types of engineering applications. Intuitively, a state of a 
system is its condition at a particular point in time. A state 
machine is a system whose outputs depend not only on the 
current inputs, but also on the current state of the system. A 
FSM is a state machine where the set of possible states is finite. 
A graphical notation for FSMs can be drawn like in Fig. 1 [5], 
[11]. 

 

Figure 1.  A graphical notation for FSM. 

The transitions between states are represented as a curved 
arrow (Fig. 1), going from one state to another. Transition may 
also start and end at the same state (State 3) and then it is called 
a self-transition. Transition is governed by the rule set in a 
guard. The guard determines whether the transition may be 
taken on a reaction. The guard is a boolean-valued expression 
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that evaluates to true when the transition should be taken, 
changing the state from that at the beginning of the transition to 
that at the end [5]. 

III. MATHEMATICAL MODEL OF A PV SYSTEM 

The model of PV system consists of mathematical models 
of a PV array, a DC boost converter loaded by constant 
resistive load and a maximum power point tracking (MPPT) 
controller (Fig. 2). 

The inputs of the PV array model are solar irradiance 
λ (kW·m-2), temperature T (K) and load current I (A). They are 
used to calculate the PV array voltage V that is used as an input 
for the model of DC boost converter. Converter calculates the 
increased output voltage Vo and the load current I.  

The switching of the DC boost converter is controlled by 
MPPT controller, which changes the duty cycle D of the 
converter according to the voltage from PV array and load 
current. The MPPT controller´s algorithm determines the duty 
cycle needed to operate the PV array in a point of its maximum 
power. 

 

Figure 2.  A block diagram of a PV system. 

The model of PV array, more described in [12], was 
parametrized to represent a real installation of 8 PV panels 
having total peak power 1960 Wp. Table I presents panels’ 
parameters used in simulation. 

TABLE I.  TECHNICAL PARAMETERS OF USED PV PANELS 

Parameter Parameter name Parameter value 

Isc Short-circuit current 7.71 [A] 

KI Cell temperature coefficient 0.11 [mA/C] 

K Boltzmann’s constant 1.38065∙10-23 [J/K] 

Tr 
Thermodynamic reference 
temperature 

298.15 [K] 

q Electron charge 1.6∙10-19 [C] 

Eg Bandgap voltage for silicon 1.11 [eV] 

A Ideality factor 1.3 [-] 

Voc Open-circuit voltage 0.589 [V] 

Rs Serial resistance 0.01136 [Ω] 

Rsh Parallel resistance 116.8415 [Ω] 

An ideal DC boost converter is modelled in two modes of 
operation, which are given by the operation state of the switch. 
Detailed description of the mathematical model of the 
converter can be found in [8]. Parameters of the converter used 
for simulation are presented in Table II. 

TABLE II.  TECHNICAL PARAMETERS OF THE DC CONVERTER 

Parameter Parameter name Parameter value 

fS Switching frequency 50 [kHz] 

L Inductance 5 [mH] 

C Capacitance 60 [µF] 

The DC boost converter is controlled by MPPT controller 

to achieve maximum power point of the PV array. There are 

many methods for the MPPT, such as perturb and observe 

method, incremental conductance method or constant voltage, 

etc. Controller changes duty cycle D of the converter to 

achieve voltage at maximum power point and so the maximum 

power in all of these techniques [13]. 

We use constant voltage method in our system, as the 

simplest and fastest method. The basis for the constant voltage 

(CV) algorithm is assumption that the ratio of the array’s 

maximum power voltage VM to its open-circuit voltage VOC is 

approximately constant. This ratio has been empirically 

determined between 70 and 80 % [13]. The mathematical 

model is described more in [12] and the flowchart of the 

constant voltage method for MPP tracking is shown in Fig. 3. 

 

Figure 3.  Flowchart of the constant voltage method. 

IV. FSM MODEL OF PV SYSTEM 

A. Two-states FSM Model 

FSM model of PV system had been already created in [8]. 
The model consists of the two states, transient and steady state. 
The transient state describes the dynamics of the systems by 
calculating changes of output parameters at each change of the 
solar irradiance or the temperature, according to the previous 
description. Because before and after these changes the values 
remain the same, the steady state had been created, in which 
the operation of PV system is simply simulated through the 
repeating of the last values of output parameters calculated in 
transient state to the model output ports. Described model, 
created in Ptolemy II software, is shown in Fig. 4. 

 
 

Figure 4.  Two states FSM model of PV system. 
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B. FSM Model of PV System with Fill Factor 

Fill factor (FF) is a parameter, which in conjunction with 
the open circuit voltage (Voc) and the short-circuit current (Isc), 
determines the maximum power of a solar cell. The FF is 
defined as the ratio of the maximum power to the product of 
the open circuit voltage and the short-circuit current [14]. 

As mentioned above, the FF changes slightly with changes 
of solar irradiance and temperature [9]. For these small changes 
of input parameters, the decision was made to simplify the 
boost converter model. Instead of using the before mentioned 
MPPT algorithm and differential equations describing the 
converter operation, the direct calculation of the current (IM) 
and the voltage (VM) at the point of maximum power using a 
fill factor of PV array was applied. It of course influences the 
model‘s dynamic, but the model is still able to represent the 
small changes in PV system operation. The model for this state 
is shown in Fig. 5. 

 

Figure 5.  The model of the state using FF for maximum power 

determination. 

The maximum power is calculated as a multiplication of 
the fill factor, the short-circuit current obtained and the open 
circuit voltage [12]. Then a set of equations, consisting of 
following equation for maximum power: 

 MMM IVP   (1) 

and the generalized equation for solar array [12], are used to 
calculate PV array voltage (VM) and current (IM) in MPP. 

The model of DC boost converter in Fig. 5 represents an 
ideal DC boost converter and its mathematical representation 
consists of following equations: 

 
 21 DR

V
I M

M


 , (2) 

 
D

V
V M

o



1

. (3) 

The duty cycle D is derived from (2) and then used in (3) to 
calculate the converter’s output voltage Vo.  

The FSM model with this approach is shown in Fig. 6. The 
transient state is the same as in the previous FSM model. The 
only difference is that the fill factor is calculated from 
maximum power achieved by the MPP algorithm. In case that 
there are no changes of input parameters, the model passes to 
the steady state, where the operation of PV system is simply 
simulated through the repeating of the last values of output 
parameters calculated in transient state to the model output 
ports, as before. 

 

Figure 6.  Extended FSM model. 

In the case of small changes of input parameters, the model 
can pass to the next state (labeled as FF), where the maximum 
power is determined using value of fill factor calculated in 
transient state. For the case of the several following small 
changes of input parameters, the state labeled as FF calc has 
been complemented, where the maximum power is calculated 
using MPP algorithm for the short time and the fill factor for 
the following calculation of the maximum power is 
consequently determined. 

V. COMPARISON OF THE CREATED MODELS 

A simulation case was used for a comparison with 
previously created models as well as to verify model 
functionality. The curve of solar irradiance changes, at the 
constant temperature of 25 °C, is shown in Fig. 7.  

 

Figure 7.  Solar irradiance curve. 

 

Figure 8.  PV array output power of the first model for different solar 

irradiances. 
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Figure 9.  DC boost converter ouput voltage of the first model for 

different solar irradiances. 

This procedure was chosen to test model’s ability to 
calculate correct PV array output power. Obtained results for 
the first FSM model are shown in Fig. 8 and Fig. 9. It can be 
seen in Fig. 7 and Fig. 8 that there are small changes in output 
power of PV array caused by small changes of solar irradiance. 
Nevertheless, the output power is calculated using differential 
and nonlinear equation, what takes a lot of execution time. So 
the extended model with FF state was used for the same 
simulation case. As it can be seen from Fig. 10 and Fig. 11, the 
obtained simulation results were the same. The maximal error 
of the simplified (extended) model was only 5 % and the 
average error was only 2.16 %.  

 

Figure 10.  PV array output power of extended model for different 

solar irradiances. 

 

Figure 11.  DC boost converter output voltage of extended model for 

different solar irradiances. 

VI. CONCLUSION 

The implementation of renewable energy sources to 
electric power system, especially those with an intermittent 
generation, requires a deep study of their operation in different 
operation conditions. It is even more important, if we consider 

them as the main energy sources for planned Smart Regions. 
To optimize future investments, it is necessary to create such 
models that will enable these studies. Therefore this paper 
describes the FSM model of a small PV system, which should, 
after its finishing, meet these requirements. The FSM approach 
was used to build a model capable of representing steady state 
as well as dynamic operation of a PV system. 
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