
3. SHAFT SENSORLESS FORCED DYNAMICS 
CONTROL OF SYNCHRONOUS MOTOR DRIVES 

 
3.1. SYNCHRONOUS  MOTOR  DRIVE  WITH  

FORCED  DYNAMICS  CONTROL 
 
 
Abstract:  A new control method for electric drives employing synchronous 
motors with forced closed-loop dynamics is presented.  The system operates 
without shaft sensors, only the stator currents being measured, the applied stator 
voltages being determined by the computed inverter switching algorithm with  
a knowledge of the dc link voltage.  The prescribed response to the reference speed 
demand can be chosen as direct acceleration control, linear first order and second 
order speed response. The control system, as developed to date, would be suited 
very well to applications requiring control to a moderate accuracy.  Experimental 
results obtained indicate good agreement with the theoretical predictions. 
 
 
3.1.1 Introduction 

The new FDC based control method for electric drives employing 
synchronous motors will first be described and then some experimental results 
presented.   

The system operates without shaft sensors, only the stator currents being 
measured, the applied stator voltages being determined by the computed inverter 
switching algorithm with knowledge of the dc link voltage.  Various prescribed 
dynamic responses to speed demands are possible, according to dynamic modes such 
as those listed and described in Chapter 1.   

 The drive control system contains a set of two observers for estimation of the 
rotor speed and the load torque given the magnetic flux from a flux estimation 
algorithm.  The control system, as developed to date, would be suited very well to 
applications requiring control to a moderate accuracy.  Experimental results 
obtained indicate good agreement with the theoretical predictions. 



 It will be recalled that the FDC method was formulated in the α, β frame, when 
applied to induction motor (IM) drives, yielding oscillatory three-phase stator 
currents automatically producing a continuously rotating magnetic field in the motor 
due to an inner oscillatory mode of the closed-loop system, no assumptions being 
made about the stator currents and fluxes being oscillatory and sinusoidal.  In the 
case of the synchronous motor, however, the method is formulated in the d, q frame 
to avoid complications due to rotor saliency, in cases where this is present.  In 
contrast with the IM drives, the rotating field is produced instead through the time-
varying d, q / α, β transformation, as in other vector control schemes. 

 The drive control system has a nested loop structure, shown in Fig. 3.1.1 
comprising an inner current control loop and an outer speed control loop realising 
the closed-loop dynamic behaviour of the selected dynamic mode. The inner 
control loop forces the three-phase stator currents to follow their demands with 
negligible dynamic lag by setting the switching state of the three-phase inverter to 
oppose the errors between the demanded and measured stator currents, upon every 
iteration of the digital processor.   
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Fig. 3.1.1   Overall control system block diagram 

 In common with the FDC based approach already created for induction motor 
drives, the synchronous motor is treated as a nonlinear multivariable plant in 
which the control variables are the two stator current vector components and the 
controlled variable is the rotor speed.  Since there are two control variables and 



only one controlled variable, there is one degree of freedom available to optimise 
the performance of the whole system.  In this case, the control variables are chosen 
to maintain the stator current vector and the magnetic flux vector at right angles, as 
in conventional vector control. 

Since the only measurement variables are the stator currents, as for the previously 
described FDC based IM drive, a rotor speed estimator is employed which requires 
just these measurements together with the known stator voltages and estimated 
magnetic flux components from a magnetic flux calculator.  An observer whose real 
time model is based on the motor mechanical equation produces a load torque 
estimate required by the outer loop control law.  This observer is in common with the 
previously described IM drive control system as was already presented in section 
2.1.3.  It requires the output of the speed estimator, the measured stator current 
components and calculated magnetic flux components as inputs. 

 
 
 

3.1.2 The Control Law Development 

 In the interest of simplification, again in common with the IM based FDC 
system, the control system is arranged in a hierarchical structure [1] in which the 
stator current demands are generated as primary control variables by a master 
control law, to be followed closely by a slave control law using the true control 
variables, i.e., stator voltages, as shown in Fig, 3.1.2.   
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Fig. 3.1.2   Hierarchical structure of the control system 

 
2a) Model of Motor and Load 



 The permanent magnet SM is described in the synchronously rotating d, q co-
ordinate system: 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+⎥⎦
⎤

⎢⎣
⎡
Ψ

ω
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
ω−

ω
−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

qu
du

qL
10

0
dL

1

0

qL
rp

qi
di

qL
sR

qL
dL

rp

dL
qL

rp
dL

sR

qi
di

dt
d

PM
 

 
 

(3.1.1) 
(3.1.2) 

 ( )[ ]{ } [ ]LelLqdqdqPM5
r

J
1iiLLic

J
1

dt
d

Γ−Γ=Γ−−+Ψ=
ω

, (3.1.3) 

where  id, iq and  ud, uq are, respectively, the stator current and voltage components, 
ωr is the rotor angular velocity and  ΓL is the total load torque defined in Chapter 1.  
ΨPM is the linkage permanent magnet flux,  Rs is the stator resistance,  Ld and  Lq  
are the direct and quadrature axis inductances, and  p is the number of pole pairs. 
 
 
2b) Master control law 

 The master control law is the FDC based speed control law and, in common 
with the FDC based IM drive control system, is derived using the general approach 
presented in Chapter 1. 

 First, the master control law is based on the linearising equation [2] that yields 
the first order linear dynamic mode, obeying the following differential equation: 
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(3.1.4) 

The motor modelled by equation (3.1.3) for the rotor velocity is forced to follow 
the desired dynamics of (3.1.4) by equating their right hand sides: 
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This is the required linearising function. 
 The control and estimation algorithms given below are expressed with the 
state variables (x) replaced by their estimates ( )x̂   and the motor parameters (p) 



replaced by their estimates ( )p~  as they cannot be known with infinite precision in 
practice. 

 The rotor magnetic flux calculator estimates the individual rotor flux 
components, Ψd and Ψq simply using the well known relations: 
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(3.1.6) 

 The second part of the control law is formulated on the basis of the permanent 
magnet synchronous motor (PMSM) construction, which has the magnets mounted 
on the rotor surface.  The maximum torque sensitivity [3] is achieved with: 
  0id = (3.1.7) 

An equation yielding the required value of iq is then obtained from equations 
(3.1.7), (3.1.6) and (3.1.5).  On the assumption that the current control loop causes 
id and iq to follow the demanded currents, id_d and iq_d , with negligible errors, 
equation (3.1.7) and the equation yielding iq together constitute the FDC control 
law, when id and iq are replaced, respectively by id_d and iq_d : 
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(3.1.8) 

 This is the FDC master control law that was first derived for PMSM drives.  
This master control law may simply be generalised to encompass other dynamic 
modes by noting in control law (3.1.8) that the term, ( rd ˆ

T
J )
~

ω−ω
ω

 is the inertial 

torque (sometimes called the dynamic torque), ΓI ,  introduced in the section 1.2.2 
and shown in Figure 1.3.1.  Then, dI accJ~=Γ where  ad  is the demanded rotor 
angular acceleration defined in the section 1.3 for various dynamic modes.  The 
generalised form of control law (3.1.8) is therefore: 
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2c) Current Control Law (Slave Control Law) 



 The slave control law of the inner loop controls the stator voltages so that 
the stator current components, id  and iq , follow the demanded values, id_d  and 
iq_d .  The power electronics and bang-bang inner loop control law are identical 
to those used in the IM drive and the reader is referred to section 2.1.2c for 
details.  The only difference in the implementation is that the 2/3 transformation 
indicated in Figure 3.1.1 is time varying and a time varying α, β to d, q urrent 
measurement transformation is required, due to the control system formulation 
in the d, q frame. 

 
 
 
2d) The discrete time two-phase oscillator 

 The discrete time two-phase oscillator [6] of Figure 3.1.1 is an unconventional 
approach to generating the matrix elements, S = sin(p t) and  
C = cos(p t) of the rotational transformation needed for the three transformation 

blocks shown in Figure 3.1.1, without the need to evaluate the trigonometric 
functions directly.  They are instead produced directly as transformed state 
variables C and S of the following discrete time dynamical system: 
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(3.1.10) 

where  S=sin(p rω̂ t)  and  C=cos(p rω̂ t). 

 It should be noted that this scheme would also be applicable in conventional 
vector control methods. 
 
 
 
 
 
3.1.3 State Estimation and Filtering 
 



3a) The Pseudo Sliding Mode Observer and Angular Velocity 
Extractor 

 This speed estimator uses the measured stator currents and known stator 
voltages together with the PMSM model to generate a rotor speed estimate and is 
based on the same principles as the one presented in section 2.1.3b for the IM 
based drive.  The reader is referred to this section for a detailed discussion but the 
basic derivation is given here in view of the different motor model.  The stator 
current vector pseudo sliding-mode observer used here is based on equations 
(3.1.1) and (3.1.2) as a real time model but purposely using only the terms without 
the rotor speed, ωr.  Thus: 
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(3.1.11) 

where vd  and  vq  are the model corrections, i*
d  and i*

q  are estimates of id and iq as 
in a conventional observer, but the useful observer outputs here are vd  and  vq .  
The classical sliding mode observer uses the following bang-bang correction loop 
actuation function: 
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 In the sliding mode,  vd and  vq  would both switch rapidly to maintain 
 and .  Under these circumstances, the short-term average values of  

vd(t)  and vq(t), which are denoted the equivalent values vd eq (t) and, vq eq (t) 
replace exactly the rotor speed dependent terms in expressions (3.1.1) and 
(3.1.2) that are purposely omitted from the real-time model of the observer.  
Equation (3.1.12) cannot directly generate vd eq  and, vq eq (t).  To solve this 
problem, a pseudo-sliding-mode observer [4], as shown in Fig. 3.1.3 (a) may be 
formed by replacing equation (3.1.12) with (3.1.13): 
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Here, the gain, KI , is made as high as possible within the stability limit, since as, KI 
→ ∞  then  vd → vd  eq  and  vq → vq  eq . For large  KI , the errors between real motor 
currents and fictitious observer currents are driven almost to zero, yielding: 
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(3.1.14) 

Based on equation (3.1.14) an unfiltered angular rotor speed estimate, , can be 

extracted as (3.1.15): 
r
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3b) Observer for Load Torque Estimation and Rotor Speed Estimate 

Filtering 

 This observer, shown in Fig. 3.1.3 (b) is of the same form regardless of the 

type of motor and is fully presented in section 2.1.3. In the case of the PMSM  

drive, the computed electrical torque is given by [ ]dqqd5el iic Ψ−Ψ=Γ : 
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a)  Pseudo-sliding mode observer b)  Filtering observer 

Fig. 3.1.3   Block diagrams of pseudo-sliding mode and filtering observer 

 
 
 
3.1.4 Experimental Results 

 The parameters of the permanent magnet SM and ancillary devices used for 
the experiments are listed in the Appendix.  The control law was implemented 
via a Pentium PC166, the stator currents being measured through LEM 
transformers and evaluated using a PC Lab Card PCL818 built into the PC.  An 
IGBT transistor module 6MBI10L-060 was used as a three-phase inverter, with 
a dc bus voltage of  Udc=90 V. Data logging of the experimental variables was 
carried out for a 0,85 s time interval and synchronous motor was idle running. 

 Experimental results for the FDC based PMSM drive in the constant 
acceleration control mode are shown in Fig. 3.1.4.  The range of rotor speeds 
achieved is ωd=20-80 rad/s with prescribed acceleration times Tacc=0,05-0,2 s. 

Preliminary experimental results for an idle running PMSM drive in the first 
order linear dynamic mode are shown in Fig. 3.1.5.  The achieved control range of 
the shaft angular velocity is ωd=20-80 rad/s with a prescribed time constant of 
Tω=0,15 s. 
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Fig. 3.1.4   Experimental results for synchronous motor in constant 

acceleration mode 
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Fig. 3.1.5   Experimental results for synchronous motor with first order 

dynamic 



 Preliminary experimental results for the PMSM drive in the second order 
linear dynamic mode are shown in Fig. 3.2 6.  The achieved control range of shaft 
angular velocity is ωd=20-80 rad/s and a prescribed settling time of = 0,2 s. sT
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Fig. 3.1.6   Experimental results for synchronous motor with second order 

dynamics 
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Fig. 3.1.7   Experimental results with second order dynamics, ω d = 40 rad/s, 
Tω = 0,1 s and three various damping factors, ζ = 0,5, ζ  = 1 and ζ = 1,5 



Finally Fig. 3.1.7 shows experimental results for the PMSM drive in the 
second order linear dynamic mode for ξ=0,5 (under-damped), ξ=1 (critically 
damped), and ξ=1,5 (over-damped). 

 
 
 

3.1.5 Conclusions  and  Recommendations 

The preliminary investigations of the proposed new FDC based control 
method for electrical drives employing permanent magnet synchronous motors 
show good agreement with the theoretical predictions.  This can be clearly 
observed in figures 3.1.4, 3.1.5 and 3.1.6.  It should be noted that the motor was 
not subject to an external load torque.  The significant, though not very large, 
departure from the ideal performance is due mainly to the non-zero iteration 
interval, ‘h’, and time delay in the load torque estimation as well as due to errors in 
the motor and load parameter  estimation. 

 The control system, as developed to date, would be suitable for applications 
requiring sensorless speed control to moderate accuracy ( %5≈ ).  Further research 
is required to investigate automatic shaft alignment for the start-up conditions.  
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Appendix 

Three-phase permanent magnet synchronous motor, EVAX EVPU Nova 
Dubnica are as follows: 
 

Permanent Magnet SM parameters Parameters for equivalent circuit 

Rated power   Pn=720 W Direct inductance          Ld = 6.06  mH 
Rated speed   nn=3000 rpm Quadrature inductance  Lq = 5.73  mH; 
Rated current   In= 3 A Permanent mg. flux        ΨPM = 0.119 Vs 
Number of poles 2p=8 Stator resistance            Rs = 2.2  Ω 
Terminal voltage  Ut=90 V Moment of inertia           J =3.5.e-4 

kgm2 
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